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Estimatingthetermsofthe identities with the help of the inequalities O~~<%aa<i~~2 

(i -- q)-l< (1 - pm&l , we obtain the inequality (2.4). 
Thus we have shown that in case of the motion of a viscous compressible fluid with the 

Tate equation of state, a convex velocity profile forms at high densities between the plates 
or in a pipe of circular cross-section, whose amplitude increases exponentially in the down- 

stream direction. The velocity has the form u =jq, where 7 = 4.&(f + AP/A)x/L [(,,v + I/~,,~) la (1 + 

AplA)]-1, and 
e = I (v/a) (j = i), 'p = cp (r/a) (j = 2) 

is a dimensionless function taking values in the interval (0.~. 
A quantitative estimate-of-the influence of the volume 

viscosity on the fluid flow was obtained by solving (2.3) 
numerically for the case when j= I, Apoa’rls-” = I,LzL-~ In (1 + ApiA) = 
0.04 , and for various values of n&Is. The results obtained 

were used to draw a graph of ,j = (qv/ss + l/s)-l'p,, versus lgn&h Fig.4. 
The function differs from the maximum velocity by a dimensional 
multiplier independent of t)". In addition, graphs were drawn 
of the function o (U/O), characterizing the flow velocity profile 
for various values of Q/Q (Fig.5) where the curves 1, 2, 3 
correspond to the values ~/rk = 100, 400, 1000. Figs.4 and 5 
illustrate the assertion proved in Sect.2 that then the volume 
viscosity increases and other parameters are kept constant, 

ornan tends to unity and the relation u,.,ri is satisfied 

asymptotically for the maximum velocity of flow. 

Fig.5 
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SHOCK WAVES IN AN ISOTHERMAL GAS IN THE PRESENCE OF REACTION FORCES* 

YU.N. GORDEYEV, N.A. KUDRYASHOV and V.V. MURZENKO 

One-dimensional isothermal gas flow taking into account reaction forces 
which depend linearly on the velocity is considered. Problems of gas flow 
with and without convective terms are formulated. Their analytic and 
numerical solutions are obtained, and the possibility of obtaining shock 
waves reflected within the medium is indicated. 

The flows in question arise when a gas is filtered through porous media, during its 
passage along pipes and major cracks, when porous bodies move in gaseous media, and in a 
number of technological processes /l, 2/. A system of equations describing the motion of a 
gas taking frictional forces into account if given in /3, 4/. 
of quasilinear equations were studied in /5/. 

The general types of systems 

1. Formulation of the problem. A system of equations describing a one-dimensional 
isothermal gas flow with resistance forces linear with respect to the velocities, has the form 

(1.1) 

P = c”P 

*Prikl.I4atem Ifekhan,49,1,171-175,1985 
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Here p is the density, P isthepressure,uis thegas flow velocity, c is the isothermal 
speed of sound, and a is constant coefficient of resistance. 

As a rule the convective terms are omitted from the second equation of (l.l), since it 
seems that large resistance forces would cause them to become, after a time t - p/a, vanish- 
ingly small compared with the remaining terms. It appears however that under certain initial 
and boundary conditions the solutions of (1.1) with and without convective terms differ from 
each other quantitatively, as well as qualitatively. 

We take the initial and boundary conditions in the form ( (A and u0 are constants) 

p (2; t = 0) = 0, U (I; t = 0) = 0 (1.2) 

p (I = 0; t) = A 1, u (z = 0; t) = ILo (1.3) 

We will seek a selfsimilar solution to problem (1.1)-(1.3) 

p = .4ff @), u = c9) (e); 8 = z’(ct) (1.4) 

Here f and o are dimensionless analogues of the density and velocity of motion of the 
gas, and 3 is the selfsimilar variable. Using the variables (1.4), we can write problem 
(1.1)-(1.3) in the form 

f' (cp - 8) + c~‘f = -f. (1.5) 

f' - l$Yf (e - q) = --or+; 0 = o/A 

f(t3-co)=0 (l.E! 

f (e = 0) = i, v (e = 0) = 'pO; o0 = U,/C (1.7) 

When the convective terms are neglected, the second equation of (1.5) is replaced by 
f * = --o’p /+a/. 

Thesiniplewave /6/ 

represents the solution of system 
We see that in this case the rate 
a and the constant A. 

(1.5) with conditions (1.6) and the first condition of (1.7). 
of gas inflow cp(O=O) depends on the resistance coefficient 

When the rate of gas inflow is greater than the speed of sound (m(e=O)>l), two boundary 
conditions (1.7) must be given for system (1.5). 

The solution of problem (IS)-(1.5) when o=o (without the reaction force! has the form 

(r = a-“‘, f = f - 0’:~ 8. e Q e. 

'F = 0, f = 0, e > 8,; e. = o-“* 

(1.81 

(1.9 

Fig.1 shows the relationship between the gas pressure f(o) and its velocity ff (01 for 
'pO = 1.2; 1.4; 2; 5 (curves 1-4) . Qualitative differences in the relationships f(@, and CF (8) 
when Q,> Q,* = I/T(cl" > 0) and q0 < q-o (q" <u) , are connected with the boundary condition p('J;z)=: 

AI. When p (0; 1) = A?, the value of ~+~*~l/z depends on 0~. 

Fig.1 

From solution (1.9) it follows that when 0~0 and 'Po>ir 'P-m, as e increases, i.e. 

the velocity of propagation of the gas front is infinite. 

2. Solution of the system of equations for a>~. From the second equation 

of (1.5) it follows that when o>o, the gas propagates with a finite velocity. Let e, be 



the selfsimilar coordinate of the gas expansion front. 
gas at the front is the same as the velocity of motion 
obtain 

s(e = 8,) = 'p, = 8, 

Since the velocity of motion of the 
of the front itself, from (1.4) we 

(2.1) 

From (1.5) we see that e<& when q>O. 
Let us now consider the motion of a gas when %>I. The characteristics corresponding 

to :,=I&-c, emerge from the straight lines r=O and 2 = Vlt where ut = Ccpl. Since Eqs. 

(1.1) are not linear, the behaviour of the characteristics depends on the solutions. Two 
cases are possible: either the characteristics corresponding to & and emerging from the 

straight lines +=o and t = vlt, intersect on some line (a straight line, since the problem 

is selfsimilar), or the field of characteristics is continuous, whereupon a characteristic 

emerges from the point t= 0, t= 0 The space occupied by the gas is divided in the first case 
by the line at which the characteristics intersect, and in the second case by the character- 

istic emerging from I= 0, t=O. 
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Fig.2 shows the possible fields of characteristics, and the straight line X(t) is shown 

by a dashed line. In region 1 the solutionisdetermined by the boundary conditions only (the 
characteristics corresponding to E,= U+C and 6= U-C, emerge from the straight line z---O), 
in region 2the gas density and velocity are determined by the boundary and initial conditions 
(the characteristic corresponding to &= Y-C, emerges from the straight line += st). 

Fig.2 

The solution of (1.5) in region 2 satisfying conditions (1.6) and (2.1) has the form 

o = el. f = 0% (8, - 8). e0 d 8 G 8, (2.2) 

where e,, is the selfsimilar coordinate corresponding to the boundary between regions 1 and 2. 
Let us consider the case when X(t) is a characteristic. The determinant of the system 

(1.5) composed of the coefficients of the derivatives 1' and 'p', vanishes at the point 'p= 
e+ i. For a solution to exist, it is necessary that f= CIT. The solution is continuous 
on the characteristic, therefore the gas flow velocity is CP (ep) = el. The definition X(t) (dX/dt= 
f,= IL- C) yields eO = 8, - 1. The condition j= ocp at the point 8, holds, since the solution 
has the form 

o (e = eO) = 8,. f (e = ed = UCP v-h) = 4 (2.3) 

If the characteristics intersect on the line X(t), then the solution has a discontinuity 
on X (0. Let D =dXid The Hugoniot conditions for an isothermal gas can be written in 
selfsimilar variables in the form ([PI denotes a jump in the function F) 

if (CP - w = 0, [f + f ccp - eom = 0 

whence 

o1 = e0 + (9. -8,)-l, f1 = I% (oI - ed* (2.41 

Here fl=f(Bo-- 0). ~l=(p(&,-o) (the density and velocity of gas to the left of b,) /%=f(f~,+ 
o), 'P, = v (0, + 0). 

From (2.2) and (2.4) we obtain 

ql= e0 -+ (el - en fl = d3, (el - 8,)s (2.5) 

The density fI and velocity of motion oI are connected with 8s by the expression 

I1 = o[& i. (el -00 (n - ep (2.6) 

When the solution is continuous, conditions (2.5) become (2.3). 

3. Results and discussion. We will solve the problem (l.S)-(1.7) in region 1 by 
numerical methods. We introduce the mesh O= {O,,= nh; h = o,i,..., N) (h is a step along the 
coordinate) and mesh functions f,, and (in. 
and f,,=f(e=o)=i. 

In accordance with (1.7) we choose (p,=p(~=o) 
Using the given values of cpO and f. we find f,, and cpn at the points 

41,,(n= i,2,...,~) using the Runge-Wutta fourth-order approximation method /9/. In the course 
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of the computation we find the coordinate B. from condition (2.61, and 8% from (2.5). 
In region 2 the solution is given by the formulas (2.2). 

Fig.3 

Fig.3 shows the relationships connecting f (61 with qz(Eq for *= oaz at "PB z?3 1.1; 5; I: I?? 

lcurves 1-4. men vnx a-*li the salution is a simple wave (formla 1.8, curve 3). For 

p. < a-‘,* the velocity rp increases as 0 increases, attaining its maximum value at: the 
point &, which represents the coordinate of the weak discontinuity. Sf 'pO > c-l/:, then q 
decreases as e increases. When O=Bar the density f and gas flow velocity 9 both change 
discontinuously. The solution is further described by (2.21. The dashed line in Fig.3 
separates the solutions in regions 1 and 2. The dot-dash Line q~=$ is the boundary of the 
region occupied by the gas. 

The discontinuity appearing in the solution at @=EQ,(~,>~-'~~ is a shock wave 
a direction opposite to the motion of the gas. 

Just as in the case O=~, when c<i the problem (1.5)~(t.7) has no subsonic 

moving in a 

solutions. 

Fig.4 

Fig.4 shows the result of computing the density f(B) and velocity ~(3) of the gas at 
0 = 0.j; t& = 2.0 lcurves 1 1, LI= 0.95, qo i= 2.0 <curves 2 ana c= 0.95, h s it5 icurves 3). We see 

that an increase in O(Q is fixed) lea& to a more rapid decrease in p as 8 increases, 

with the jump in q and E increased. Len region 1 we observe a rise in density, leading to 

the appearance of a shock wave. 

Fig.5 
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Fig.5 shows the results of solving problem (f.5)~(1.7) at 0= i for cpO ~7 1; 1.5; 5; 20 (curves 

l-4). As q,, increases, the gas becomes more compressed and the value of the jump in the 
dynamic variables at the shock wave increases. 

The motion of the gas at c>l merits attention. Fig.6 shows the relations r(6) and 

'F f6) for o= 1.25 at so = 1.2; 1.06; 0.89 (curves l-3). When o0 = dj4, condition (2.6) holds at 

the point O= o. This means that when O=O,q and f change their values discontinuously 
(a shock wave is situated at the boundary of the medium). The solution behind the shock wave 
is subsonic and is described by (2.2). When o. < &* r there are no supersonic gas flows. 

Fig.6 

When a> 1, a subsonic flow exists unlike when 06 0<1, identical with the solution 
(1.8) of the filtration problem. 

Thus system (1.1) with conditions (1.2), (1.3) admits not only of the filtration solution 
(1.8), but also a number of other solutions depending on the rate of inflow of gas k If 

a<A, we have only a supersonic gas flow, and a shock wave forms when uo> u*g = &AIR moving 
in a direction opposite to that of the gas flow. An increase in a (or decrease in A) leads 
to a decrease in u0*, and an increase in the jumps in dynamic variables (the density and 
velocity) of the gas on the shock wave. 

In the case when ~r>d supersonic inflow of gas is possible only when =a > c (U/R)%, and 
a shock wave always forms. Moreover, when a>A , a subsonic gas inflow is possible, identical 
with the solution of the filtration problem. 
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